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THE DISPERSION MATRIX OF RESIDUALS WHEN ALL
VARIABLES IN A LINEAR REGRESSION FUNCTION ARE

SUBJECT TO ERROR

By

CRISTINA P. PAREU

1. Preliminary Discussion

Let x., X~, xa, .. , x, be s variables in the s-dimensional
Euclidean space (s > 2) which are assumed to be related by
the functional relation f (XI, X~, .. , x.; 0o , Ot, 0 0 0' 0.) = 0,
where f)o, OJ, ... , Os are the parameters of the relationship. Let
n multivariate observations be made of the variables xj, X~, Xa,

... x, and assume that the expected value E (Xjl) = xj, (j = 1,
2 ... , s; t = 1,2, ... n), which is the "true" value. If g (Xjl)

is the probability density function of the random variable Xjt,

the expected value of x., is defined as

E (Xjl) = f x., g (Xjl) dxj., where
]I[

M is the range of xj. in a one dimensional space. It is assumed
that the errors, (Xjl - Xjo), have a joint multivariate distribu
tion, their expected values zero and their variances finite. By
assumption, the "true" values are related by the function f (xw,
X~o, ... , Xao; f)o, 0;, 0 •• , Oil) = 0. Since the "true" values of x., X2,

... , x, and the parameters are not known, it is necessary to
specify the function relationship and the undetermined coef
ficients. Hence, let the approximating function be f (X'I, X'2•

•• 0' x's; f)'o, f)'l, 0'" f)'s) = 0.

The problem is to estimate the parameters of the functional
relationship by the method of least squares from the observed

';;.values which may all be in error.
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•
The least squares estimate of (), assuming a linear relation

ship, is

s;

J'() = (XOTWXO)-l XOTWY01 •••••• (1)

where XO is an n X s non-singular matrix of observed values of
Xi, (i = 1, 2, ... , s) and yo is an (n X 1) matrix of observed
values of the dependent variable. The weight matrix, W, is the
identity matrix In, if the residuals are assumed uncorrelated and
of equal weights.

The above estimate of () can be used somewhat less satis
factorily when the x's are subject to error and no knowledge
of the size of the error is available. If it is known that the
errors in the x's are relatively small with respect to the x's,
it may be quite satisfactory. More specifically, the first order
error approximation to the error the () resulting from the consi
deration of dXo in the normal equation is given by

"d() = - (XOTXO) -1 [( dXO) T XO + XOT (dXO)]

(XOTXO)-l XOTYO + (XOTXO)-l (dXO)Yo, ... (2)

•

where dXo denotes the error in XO. In general, these values
of dXo are not known, but in some cases, bounds for them are

"-
known so that some estimate of I d() I can be computed. It c~n •
then be seen that if the errors of the observations on the XII'S

(i = 1, 2, .. , n; 1 = 1, 2, ... s) are negligible with respect to
"-

these observations, the estimate () is quite a satisfactory appro-
ximation.

However, in cases for which it cannot be assumed that
the errors in the observations in the Xi I 's are trivial, these
estimates may not be adequate, and even the use of (2) is not
completely satisfactory since the values of dXo are not com
monly known though bounds for them may be available. It
is necessary to take into account the errors of observations of
the Xi I'S" as well as those of the Y i 'so For this purpose, an

•
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improved experimental design which can provide estimates of
the variation of each measurement is suggested in this paper.
Some earlier authors such as Deming, Acton, Brown, Kummel
and Norton have indicated an appropriate experimental design
with corresponding analysis in working out an appropriate
theory for generalized regression coefficients appropriate for
curve fitting. The experimental design proposed here is in
more respects similar to the method proposed by Kummel in
1879, and the method for s = I case presented by Norton,

• though the following presentation using matrices, is applicable
to the general case with any s and with the possibility of cor
related values, not only of the observations of the Yr's but also
of the Xi I'S, and even of the Y i 's and the XI I'S.

2. An Experimental Design Providing
Estimates of Variation in the Measurements.

For each observation designed to enter the normal equa
tions, a series of multivariate measurements in the vicinity
of the desired Xi/S (i = 1, 2 ... n; 1 = 1, 2 .. s) and Yj, is
made. The set of points corresponding to each of these multi
variate points is called a "constellation". The collection of
means is taken as the multivariate observation while the vari
ances and covariances are used as measures of their errors .

• Suppose n > s sets of observations are made on each of
the variables XI, x~, X:l, ... , x., y and that there are m. indivi
dual observations in the ith set of the n constellations of observa
tion points. There are, therefore n (s + 1) random variables
with m, (i = 1, 2, ... n) observations in the ith set. Let it
be assumed that E (Xilt) = Xii", (l = 1,2, ... , s; t = 1,2, ..
m.; i = I, 2 ... n) and E (Y j t ) = YiO' The random variables
(Xilt - Xil") and (Yi t - Yio) within the ith constellation are
assumed to have the same multivariate distribution, expected
value zero, and finite variances. Let the ith observation be
.. 1 mj

represented by the mean X i lO= -- ~ XOilt
m j t=l

•
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1 m,
:s s", t- Each residual e, (i = 1, 2, ... n ) ,

mi t=l

then is associated with the means of tile m, observations of the
variables Xil, Xi~, ... , Xis, Yi of the ith constellation, so that in
the least squares estimate of e, X? and yo are now replaced by
the n X (s + 1) matrix A and the (n X 1) vector Y of means.
As the m, of individual observations of the n sets of observa
tions of XI, X~, Xa, ... , X s , Y is increased indefinitely, Xi I, XI~,

X13, •.• , x., Y1 converge stochastically to the true values and, •
A

therefore, e is a consistent estimate of e.

In the classical regression theory, the weight matrix
applied to the residuals is abitrarily assigned, or, if no basis
for arbitrary weighting is available, the dispersion matrix Ve

of the residuals which is assumed to be known is used. The
least squares estimates of e obtained for these cases may be,
as pointed out in the above discussion very poor estimates of
e, unless the errors of the observations on the Xi I 's (i = 1, 2, ...
n; 1 = 1, 2, '" s) are very small relative to the observed
values. The estimates of e can be improved by taking into
consideration the variances of the errors of observation and
the fact that the residuals e, (i = 1, 2, ... n) are actually func
tions of the regression coefficients which are to be estimated.

3. The General Form of the Dispersion
Matrix of Residuals.

•
Let the vector of residuals be denoted by

e = Y -xe, ..... (3)

where e is the vector of parameters, Y and X are respectively
n X 1 and n X (s + 1) matrices of constellation mean values;
e is the vector of residuals ei associated with the "mean" point
of the ith constellation. If the expected value of a matrix
of random variables is defined as the matrix of expected values
of its elements having the same, row and column orders as the

•
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matrix of elements, the dispersion matrix V. of residuals, e, is

V. = E (eeT) ---:- E (e) E (e") .....,. (4)

.... (6)

•

•

•

•

Since the vector e of residuals ei (i = 1, 2 ... , n) is a function
of the vector Y and the matrix X of mean values, it seems neces
sary to express the dispersion matrix V. in terms of the disper
sion matrices of Y and of X, and the

Xoj

Xjl

covariances of vectors Y and. x . After algebraic
~ j.e

manipulations, the general form for V. is obtained as:

(5) .. V. = var Y - cov (XO, Y) - cov (Y, XO) + var (XO);

where

var Y == E (YYT);

cov (Y, OX) = E (YOTXT);

c~'( (XO, Y) == E (XOyT) ;

var (X(J) = E (XOOTXT);

Y = [YI. - E (yd ] is an n X I vector of deviates.

Further reduction gives

n n

(7) .... V. = V r + ~ s B. (OTV O:=..-

where Vy is the dispersion matrix of the vector of Vi'S; V x.x,
and V y.x, are respectively column and row covariance vectors

of the y in the ith constellation and the x's in the jth constella
tion; V x .. is the dispersion matrix of x's in the ith and jth

1J

constellations. It should be noted that V XIYJ = vr Y':?'I

B; is a column vector with unity in the ith position and zero
elsewhere.
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The matrix, Ve , is in general non-diagonal. However, if
the observations of the Xii'S and the Yi> (i = 1,2,3 ... n) are
independent, then the residuals are uncorrelated. In this case,
the dispersion matrices V x .. and the covariance vectors, V x.v

IJ I.J

(i = j) are, therefore, all zero. The dispersion matrix of resi
duals then becomes a diagonal matrix, i.e.,

n

Vo = V), + ~ Bi(OTV x .. O-OTVxy.-VTX'Y'O) BTj .,. (8)
i=1 11 I 1 1 I

where V)' is a diagonal matrix. However, V x., is non-diagnoal •

unless the x's in the ith constellation are mutually stochastically
independent.

4. Example.

To illustrate, suppose the simple case of two vairables Y
and XI where the regession function of Y or XI is given by

E (y) = xoOo + X10l (where Xo == 1)

is considered. Suppose that three sets of observations are made
of Y and x., with the ith set consisting of m, observations
(i = 1, 2, 3), and that all these observations are in error. The
means of these n sets of observations are calculated. Further,
assume that the observations of x., and Yi are not independent.
Then, the residuals ei = Yi - (XIOOO + XiIOl); i = 1, 2,3,.
are not independent. The dispersion matrix Vo of residuals
is, therefore, a non-diagonal matrix, and is a function of 00 and
01 , Let the calculated variances of the ' i'S and the Xi I'S (i = 1,
2,3; 1 = 0, 1) and the covariances of the Yi'S and the Xii'S be
given as:

i " "
.,

er a- a- a

Yi Xo XI Yi~i

I I 0 2 .98

2 2 0 I .98

3 4 0 3 2.38

•

..
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(J 1.12 (J 1.12 (J 1.57 (J 1.36.
X1X2 YIY2 X.Y2 X:lYl

(J 1.90 (J 1.60 (T .80 (J - 1.60
X.X3 Y1Y3 X2Xl X2Y:l

(J 1.36 (J = 2.24 (J' - 2.24 IT 1.90
X2X3 Y2Ya x,Ya X3Y2

The dispersion matrix of the YI'S is then

V. = ( 1.1~
1.12 1.60)• 2 2.24

1.60 2.24 4

The dispersion matrices of the XI/S are:

• V - (: :) ; V =.(: ~.lJ V =(: :.90)Xn X.2 X.3

(: :) =(: ~.36) =(:. 0

..J
V - V V

X22 X23 Xa3 3

The covariance vectors of the YI's and the XI'S are:

( :8 J ( 1.:0 ) =( 0 \V -- V - V
.80 )• XIYl XIY2 X2Yl

V - (
.:8 ! V - ( 2.:4 ! V =( 1'.:6 )X2Y2 I XIYa XaYl

V 01.
V -- (

1.:0 )
V =( 1.:0 )-

( 2.38 / 'X3Ya x·,Yo XaY2- ..
The dispersion matrix of the residuals is therefore,

( i.12
1.12 1.60) .. 3

V e = 2 2.2: + "'I s B, (8TV 0- ()TV...
1.60 2.24 1=1 j=l xjI x,y;

-V ()B2
J

I .

YiXj "

•



•
,

24

Or,
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(

1 1.968, + 28~ 1.12 - 2.3781 + 1.128i
1.12 - 2.378 + 1.128i 2 - 1.9681 + 8i

1.60 - 3608
1
+ 1.908i 2.24 - 3.5081 + 1.3608i

1.60 - 3,6081 + 1.98)2

2.24 - 3.500 1 + 1.3608,2

4 - 4.7681 + 381
2

• I

•
If the observations of the XII'S and the YI'S are independent,

the residuals el are uncorrelated. The dispersion matrix of the
residuals, then, becomes

(

1 0 0

", = 0 2 0
004

Or,

)

3 3-+}; :SB\(8Tvx 8 -
i=l j=l ii

8Tv•.s. -VT•.r .8) BT.
11 I I I

..

(

1 - 1.9681 +
V. = . 0

o

o
2 - 1.9681 +

o •
4. The Form of V. for Special Cases.

1. When V. is a diagonal matrix; i.e., when the residuals
are uncorrelated.

2
a) If the observations of the XI/S

s) are fre of error, V
x..

i = 1, 2 ... n; j = I,
= 0 for every i.

Also V
. XIYl

gonal matrix.
tions.

= 0 = VT Hence, V. = V., a constant dia-
x.y,

This is the classical case of un correlated observa-

•
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b) If the observations of the YI'S are not in error, Vy = O.
It also follows that V 0 = V'l' Hence,

XIYI XiYI

Vo becomes

n

v, = ~ B 1 urI' V
1=1

•
This is not a common case.

2. When V 0 is a non-diagonal matrix; i.e., when the resi
duals are correlated.

a) If the observations on the XII'S are free of error (i = 1,

2 .. 11;1=1,2 s),thenV =Oforeveryi,j=1,2 .. n.
xli

Also V
X v

i ' i

-O-V
Y.X.

J J

Hence, the matrix of residuals be-

comes V0 = Vn a constant non-diagonal matrix. This is the
classical case of correlated case of correlated residuals treated
by Aitken, Duyer, and Brown.

b) If the observations of the YI 's are free of error, Vy = 0,

• and V 0 = V . Then
X vr j Y iXj

n 11

V ~ ~ B (8TV 8) BT
iee I j=l 1 xli j

As in 1 (a), this is not a common case.

In many problems, the dispersion matrix of residuals V.
must be estimated from the observed data. In cases where there
are correlated residuals, there must b an equal number of ob
servation points in each constellation and the order of observa
tion is essential. The individual observations are not replicate
.in the strict sense.

•
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6. Concluding Remarks. In the given form for Ve , an es
timate of Ve anc be obtained if good estimates of 8 are available.
A useful estimate of 8 can be obtained by minimizing the diago
nal of Vo with respect to 8. As the diagonal terms of Vo are
quadratic functions of 8 and V is assumed positive definite,

xii

the diagonal terms have a minimum.

•
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